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LETTER TO THE EDITOR 

On the apparent failure of a Flory approximation for directed 
linear polymers 

S L A de Queirozt 
Department of Theoretical Physics, I Keble Rdad, Oxford OX1 3NP, U K  

Received 21 May 1984 

Abstract. We discuss the apparent failure of a Flory approximation for directed linear 
polymers, commenting on the details implicit in this type of picture. The relationship of 
a standard Flory viewpoint to a simplified application of fractal theory is explored, and a 
correspondence is drawn between aspects of both theories. 

Directed self-avoiding walks (SAWS) are defined as SAWS in which steps in certain 
directions are not allowed. Directed SAW models were discussed by Fisher and Sykes 
(1959) in an attempt to establish rigorous lower bounds for the connective constant 
of isotropic SAWS, following the early work of Temperley (1956). However, it is only 
in the past couple of years that the asymptotic properties of these models have received 
further attention; this renewed interest stems from the recently established finding that 
the introduction of a directional bias changes the overall critical properties of 
geometrical models (for a review of directed percolation, see e.g. Kinzel (1983); for 
directed animals see Nadal et a1 (1982)). Directed SAWS describe the configurational 
properties of linear polymers under anisotropic conditions, e.g. under traction (de 
Gennes 1979). 

The critical behaviour of directed SAWS is very simple; most surprising is the fact 
that a standard Flory approximation (Flory 1971, de Gennes 1979), which works 
remarkably well for a number of both isotropic and directed models (Isaacson and 
Lubensky 1980, Redner and Coniglio 1982, Lubensky and Vannimenus 1982, Family 
and Daoud 1984, Dnoud er a1 1984), seems to give erroneous results when applied to 
this problem. This fact has been noticed by Lubensky and Vannimenus (1982); 
however, those authors do not try to work out an explanation for it. It is currently 
accepted that the theoretical grounds of the Flory approximation are somewhat shaky, 
its relatively accurate numerical results being due to a fortuitous cancellation of errors 
(de Gennes 1979); thus it seems worthwhile to discuss this apparent failure in detail, 
in order to check precisely how it arises from limitations intrinsic to the viewpoint of 
the Flory approach, which possibly do not show up in other cases. This would help 
provide a better understanding of the mechanisms involved in Flory-like approxima- 
tions. In what follows, we first recall the properties of directed SAWS and rederive the 
results of a standard Flory approach to the problem; then we show how these results 
are corrected through the introduction of the screening of repulsive interactions, which 
is related to topological properties of the walks; finally we discuss the relationship of 
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the value of the upper critical dimensionality for this problem, as given by the standard 
Flory approximation, to properties of fractals. 

A directed SAW can be decomposed into a forward walk along the preferred direction 
and a random walk perpendicular to that direction. Consequently, the average 
dimensions (R;)’/’ and ( R:)’I2 respectively along and perpendicular to the ‘easy’ axis 
are, for an N-step walk, 

(R2 11) - N”II, (R:)”’ - N ”-, (1) 

with vIl = 1 and vL = f. This is self-evident for the two-choice walk on a square lattice, 
in which only steps in the +x or +y directions are allowed (figure 1). The same results 
have been found for the three-choice square lattice (see figure 1 )  by a variety of methods 
(Redner and Majid 1983, Szpilka 1983, Blote and Hilhorst 1983), as well as for the 
five-choice triangular lattice (Redner and Majid 1983) of figure 1, in which the 
possibility of self-intersections is not ruled out at once by the directionality constraint 
(hence e.g. a transfer-matrix solution is not possible) ; this common behaviour is 
expected on universality grounds (de Queiroz 1983). Zhang er a1 (1984) showed that 
the same exponents are found for the five-choice simple cubic lattice (figure 1 )  ; actually, 
Cardy (1983) has shown from a field-theoretic approach that directed SAWS are in the 
same universality class as directed unrestricted random walks, and therefore should 
exhibit mean-field exponents y = 1, vi1 = 1 and vI = f in all dimensionalities. 

10) ibl  (c  1 Id1 

Figure 1. Directed SAW models. Allowed step directions are indicated. ( a )  Two-choice 
square lattice; ( b )  three-choice square lattice; (c)  five-choice triangular lattice; ( d )  five- 
choice simple cubic lattice. 

The Flory argument for directed systems with dominant two-body interactions is 
as follows (Redner and Coniglio 1982, Lubensky and Vannimenus 1982): in d 
dimensions, the repulsive energy is approximated as the integral of the square of the 
monomer concentration over the spatial extent of the polymer; this gives 

N ~ / R ~ , R : - I .  (2) 
The entropy term is written as the sum of two contributions, respectively from 

degrees of freedom in the ‘easy’ direction and in directions perpendicular to it: 

s -  (Rl, /R~)2+(RL/R”,2 (3) 
where R i  and R? are the dimensions of the object as given by mean-field theory. For 
directed linear polymers, one has R i  - N and RO, - NI’’. The upper critical dimension- 
ality d,, above which mean-field theory holds, is found by requiring E ~ ~ ~ ( R ~ ,  RY) - 1. 
Below d, the critical exponents V I /  and vL are found by minimising the free energy 
with respect to RII and R,. From (2) and (3) one finds for directed SAWS: 

d, = 3, vL = 5/(2d +4), = (d  +7)/(2d +4). (4) 
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Two points can be raised as concerns the above results: (i) the value of d, = 3 is 
certainly wrong, as it is inconsistent with the numerical and analytical findings quoted 
above, in particular with the field-theoretical result of Cardy (1983); and (ii) one has 
vII > 1 for d < 3 (this was already noted by Lubensky and Vannimenus (1982)). 

Actually, (ii) is a direct consequence of (i), for within the context of a Flory 
approximation one always obtains exponents greater than the classical Ones below d, ;  
this is because the energy term (which is relevant at d < d, )  tends to swell the chain 
relative to its Gaussian dimensions, in all directions (although, for anisotropic systems, 
at different rates respectively in the ‘easy’ and perpendicular directions). It does not 
seem possible to obtain a consistent approach for this problem in which the swelling 
does not extend to the ‘easy’ direction; however, this should not be a matter for concern 
because, as we shall see below, point (ii) will no longer arise once ( i )  has been correctly 
addressed. 

The reason why one usually gets correct critical dimensionalities from a Flory 
approach is that above d, an essentially non-interacting, entropy-governed, picture 
strictly holds and, accordingly, the Flory (mean-field) repulsive energy (e.g. equation 
(2) above) as obtained with classical values for the exponents is negligible; that is to 
say, the Flory estimate for the energy is correct only as long as it is of order zero. This 
is typical of mean-field theory: a system with only short-range interactions can be 
represented in the disordered (paramagnetic) phase by a mean-field picture (which is 
equivalent to infinitely ranged forces) because in that regime whatever interactions 
exist are negligible anyway. Below d,, both energy and entropy are overestimated in 
the Flory approximation, but the errors cancel to a great extent and the resulting 
non-classical exponents are fairly accurate numerically (de Gennes 1979). 

In the present case, we obtain the wrong critical dimensionality because equation 
(2) fails to represent the repulsive energy of the directed SAW even in the classical 
regime. The key point is that, since the walk is topologically one-dimensional, each 
step taken in the ‘easy’ direction effectively prevents the following steps from interacting 
with the previous ones, and this must be accounted for in a mean-field description. 
Notice that no similar effects arise for directed lattice animals or directed percolation 
because in these problems the clusters (however highly anisotropic in shape) are more 
connected, therefore a mean-field picture, where every bond (or site) directly feels the 
presence of all others, is not drastically wrong (at least in high space dimensionalities). 

We now show how the inclusion of this effective ‘screening’ of interactions corrects 
the previous results. If there are Nll steps in the preferred direction, each monomer 
only ‘sees‘ a fraction 1/Nil of the total number of monomers; this means that the 
effective concentration appearing in the Flory energy is only a fraction l/Nll of the 
total concentration, and the energy is (effective concentration)2 x (volume) = 
( 1 / N , I ) ’ ( N 2 / R , I R ~ - ‘ ) .  Now, within a mean-field context, Nil - N (more precisely 
Nil = N / p ,  where p, the effective connective constant, is a number of order one (de 
Gennes 1979)). Therefore, one has 

Erep(Ri, R ? )  - N-(d+’) ’2 .  ( 5 )  
That is, the mean-field repulsive energy is negligible for all d and we recover the result 
of Cardy (1983): there is no critical dimensionality for the problem, and the exponents 
stick to their classical values for any d. 

We see then that the directionality constaints are so strong in this case that the 
average number of two-particle encounters is drastically cut down from what is 
predicted by (2) above. We now discuss a simplified application of the theory of 
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fractals (Mandelbrot 1982) to the present case and show that it exhibits the same 
shortcomings as the standard Flory approach; this will give us further insight into the 
relationship of directional bias to the effective lowering of the degree of randomness 
in this problem. 

We begin by recalling two rules that are applicable to random fractals (Mandelbrot 
1982, Turban 1983). 

(a) If two independent fractal sets of respective fractal dimensions DI and D2 are 
embedded in d-dimensional Euclidean space, their intersection will be a set of 
dimension zero if d 3 D1 + D2. Otherwise, its dimension is DI + D2 - d. 

(b) 'Replica trick': for a random set S with fractal dimension 0, the set of its 
K-multiple points has the same fractal dimension as the intersection of K replicas of 
S. 

In the present case where the repulsive interactions arise from two-body encounters, 
we obtain that the energy term will be negligible (i.e. the set of double points will have 
zero dimension) if d b 2 0 ,  provided that both (a) and (b) hold literally. 

As regards the fractal dimensionality 0, there seems to be no unique way to extend 
this concept to directed problems. Here we make use of one possible approach which, 
as is argued below, is consistent with the Flory viewpoint leading to equation (2) for 
the energy. It is to be noticed that this approach has also been used by Kinzel (1983) 
for directed percolation. 

We write 

(mass) - (effective radius)D ( 6 )  

where the 'effective radius' Reff is the geometric mean of the average dimensions of 
the directed walk: 

Rea= (R"R:-') ' 'd .  (7) 
This is the simplest way to take into account the fact that the walk has different 
dimensions along different directions; further, if taken together with the 'replica trick' 
mentioned, it amounts to the hypothesis underlying equation (2) above, namely that 
the directionality constraint does not influence the number of two-body encounters. 
To see this, recall that the 'effective radius' as defined above can be interpreted as the 
isotropic mean dimension of directed walks, averaged over an ensemble in which the 
'easy' direction of each walk is completely randomly distributed. In order to show 
that equations (6) and (7) together with rules (a) and (b) correspond to a translation 
into fractal theory of the standard Flory approximation, we note that (6) and (7) give 

0 = d/[  V I (  +(d  - l ) ~ , ]  (8) 

0 = 2 d / ( d + l ) .  (9) 

and, substituting the classical values vII = 1, vl = f, 

From the condition d, = 20,  once again one has d, = 3. 
Within the context of fractal theory we note that there are two problems with the 

above arguments, both intimately connected with the fact that anisotropy is not properly 
taken into account. First the 'replica trick' (rule (b) above) does not apply because 
the directionality constraint is much more stringent upon different steps of the same 
walk than upon pieces of distinct walks; as stated above, the directional bias effectively 
lowers the degree of randomness in the problem, therefore d, = 2 0  is not true. The 
simplest quantitative example is that of two-choice walks on a square lattice: one given 
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walk will never intersect itself, however, the intersection of two walks is a set of fractal 
dimensionality 1. To see this, recall that the relative ‘space-like’ coordinate between 
the tips of two walks (see figure 2) performs a random walk (with three equiprobable 
displacements: 0, *2), and the fractal dimension of the zero set (set of ‘time’ instants 
when the walker is at the origin) is f for a one-dimensional random walk (Mandelbrot 
1982). 

‘ ime’  

Figure 2. Two distinct two-choice directed SAWS on a square lattice; x, the relative space-like 
coordinate, performs a random walk in the ‘space’ direction. 

Second, the definition of a fractal dimensionality through equation (6) above relies 
on the validity of the concept of self-similarity; this concept is no longer valid for a 
system where anisotropic scaling holds, in which case one can only talk of self-affinity 
(Mandelbrot 1982). Actually, since a directed SAW in d dimensions is the same as the 
graph, in [(d - 1)  + 11-dimensional space, of a random walk in (d - 1)  dimensions, its 
fractal (Hausdorff-Besicovitch) dimensionality is 1 +(d - 1)/2 (see the table at the end 
of Mandelbrot (1982)). We note that an approach similar in spirit to that underlying 
equation (6) was used by Green and Moore (1982) in an application of directed lattice 
animal theory to river networks, with fairly good numerical agreement between theoreti- 
cal results and available data from geological surveys. What is shown by these authors 
is that directed animals and river networks have the same ‘effective’ dimensionality, 
which is given by a defining equation similar to equation (6); they do not suggest that 
this is the same as the Hausdorff-Besicovitch dimension. 

In summary, we have discussed the reasons why a Flory approximation apparently 
fails in the case of direct linear polymers, commenting on the details implicit to this 
type of picture. The relationship of a standard Flory viewpoint to a simplified applica- 
tion of fractal theory has been explored, and a correspondence has been drawn between 
aspects of both theories. 

The author would like to thank R B Stinchcombe for many interesting discussions and 
for a critical reading of the manuscript. 

Note added in proof: For consistency, intrablob repulsion equation (6) should be multiplied by nb, but the 
universality nature of the gel at the gel point seems to imply that it should be multiplied by a universal 
quantity which is assumed to be constant in equation (6). It is not clear how to take this into consideration 
to develop a consistent theory. 

I thank my colleagues R Ball, M Cates, J Deutsch, S Marianer, A Olive and M Olvera for pointing out 
this inconsistency. 
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